4 天前
2024年8月,德国黑森林AI实验室(Black Forest Labs)正式从隐身模式走向公众视野,发布了备受瞩目的FLUX.1模型套件。这套模型在各个方面都达到了新的行业标准,迅速在AI图像生成领域掀起波澜。FLUX.1模型在用户评价中超越了Midjourney和OpenAI的DALL-E,在Hugging Face平台上的下载量占据榜首。 黑森林AI实验室在今年五月份推出的名为“Kontext”的AI模型系列,不仅能生成图像,还能在图像生成之后进行复杂的编辑。这种双重能力让Kontext在拥挤的AI视觉模型市场中脱颖而出,与市面上的DALL·E或Stable Diffusion不同,Kontext在统一架构中同时训练图像生成和编辑任务,实现更准确的图像理解与上下文编辑能力。 .
10 天前
太阳能领域正快速融合 AI 技术,以下是当前在该领域中具有代表性的 AI 工具与平台,按用途分类整理: 🧠 一、太阳能项目选址与可行性分析 1. Aurora Solar(aurorasolar.com) 功能:屋顶建模、日照分析、经济性预测 技术:使用 AI 图像识别分析航拍图,自动识别屋顶尺寸和倾斜度 适用对象:住宅/商业屋顶光伏开发者 2. PVGIS + AI增强工具 功能:结合卫星气象数据与 AI 模型进行光照模拟和发电量预测 平台:由欧盟开发,可集成 AI 模型自行扩展 🔋 二、太阳能系统性能监测与预测维护(O\&M) 3. Raptor Maps(raptormaps.com) 功能:无人机+AI 图像识别检测光伏面板故障(如热点、碎裂、污染) 技术:深度学习自动识别热成像数据 适用对象:太阳能电站运营商、资产管理公司 4. SenseHawk(被 Reliance 收购) 功能:用 AI 进行太阳能电站生命周期管理,从设计、施工到运维 亮点:数字孪生模型、故障预测、运维效率提升 🔄 三、电站级发电预测与调度优化 5. Xendee 功能:微电网与多能系统(含太阳能)AI 优化模拟平台 用途:经济运行优化、容量规划、储能调度优化 6. Autogrid Flex 功能:AI预测负荷与太阳能产出,实时电网调度优化 适用对象:电力公司、能源服务商、聚合商(VPP) 🌐 四、全球资源分析与GIS应用 7. Solargis + AI(solargis.com) 功能:太阳辐射预测、建模、损失分析 AI用途:用于自动清洗数据、降噪、填补遥感缺失 8. Google Project Sunroof 功能:使用 AI + 卫星图像估算某一地址的太阳能潜力 适合:用户自助查询装太阳能是否划算(美国可用) 🧰 五、开发者工具 & 开源资源 9. pvlib-python + AI 模块集成 功能:开源光伏建模库,适合与机器学习框架结合,如: 使用 scikit-learn / XGBoost 做发电量预测 结合 TensorFlow 实现组件级健康预测 10. SolarAI Technologies(亚洲新兴平台) 服务:结合 Google Earth + AI 识别建筑屋顶,做户用光伏推广、商机推荐 目标:为销售团队提供自动线索生成与客户分析 📌 典型AI应用方向小结: 领域 AI应用举例 项目选址 卫星图像识别、屋顶建模、光照模拟 系统监测 无人机图像分析、热成像故障识别 发电预测 天气+历史数据机器学习建模 运维优化 故障预测、数字孪生、维护建议 智能营销 潜在客户自动识别、报价模拟 ( ChatGPT推荐 )
20 天前
美团推出的零代码AI应用开发平台NoCode确实能够实现网站开发,但其适用场景和功能范围有一定的限制,主要面向非技术用户快速搭建简单应用或网页。以下是NoCode的核心能力和实际应用效果分析: 1. NoCode的核心功能 NoCode通过自然语言交互和AI生成技术,支持以下功能: 自然语言编程:用户只需描述需求(如“创建一个餐饮管理后台”),AI会自动生成对应的网页或应用代码。 实时预览与编辑:生成的页面可实时调整,支持局部修改(如更换图片、调整布局)。 一键部署:完成开发后,可一键发布并生成可分享的链接。 模块化组件:支持常见的前端框架(如React),可生成HTML、CSS、JavaScript代码。 2. 实际应用案例 NoCode已被用于生成多种类型的网站和工具: 商家运营页面:如酒店预订、餐饮管理后台。 数据可视化看板:运营人员可快速搭建数据分析仪表盘。 小游戏:如泡泡龙、五子棋等互动游戏。 个人工具:如就医导航助手、学习工具等。 3. 适用人群与局限性 适用人群: 非技术用户(如产品经理、运营人员、中小商户)可快速搭建原型或简单应用。 开发者可借助NoCode加速前端开发,或使用其Dev Mode进行深度定制。 局限性: 复杂度有限:适合中小型静态页面或简单交互应用,不适合高并发、复杂业务逻辑的系统。 数据依赖:部分功能(如地图导航、数据库操作)需依赖美团提供的API或外部数据源。 生成代码可控性:AI生成的代码可能不够优化,专业开发者仍需手动调整。 4. 与专业开发的对比 维度 NoCode 传统开发 技术门槛 零代码,自然语言交互 需编程技能 开发速度 分钟级生成 天/周级 灵活性 受限,依赖AI生成 完全自定义 适用场景 简单网页、工具、原型 复杂系统、高性能应用 5. 未来发展方向 NoCode计划进一步优化: 更强大的Dev Mode:面向开发者提供更专业的IDE环境。 多模态支持:未来可能支持移动端UI、3D场景等。 生态扩展:接入美团商家服务(如支付、会员系统)。 结论 NoCode能真正实现简单网站开发,尤其适合无编程经验的用户快速搭建原型或轻量级应用。但对于复杂、高性能的网站,仍需专业开发介入。其核心价值在于降低开发门槛,让更多人能快速验证创意,而非完全替代传统开发。
27 天前
SAP联合创始人、亿万富翁Hasso Plattner计划对位于波茨坦的前勃兰登堡州议会大楼进行重大投资,将其改造为波茨坦大学的第四个校区。这一举措意在将波茨坦打造为“欧洲的斯坦福”,进一步巩固其在科技、研究与创新领域的地位。 项目核心内容包括: 对年久失修、甚至在2023年曾发生火灾的前议会建筑进行修复与重建; 在该地建设新的教学和研究设施,为波茨坦大学提供更多空间; 扩展现有的Hasso Plattner研究所(HPI),加强软件工程与数字创新研究; 投资覆盖波茨坦大学的Golm、Griebnitzsee等校区。 人工智能将成为学术发展的重点 普拉特纳在一份声明中阐明了目标,即实现 “国际领先的研究与教学”,重点聚焦于人工智能(AI)。“欧洲需要这样的地方,让来自世界各地的人才能够自由思考、研究和创造 —— 波茨坦将成为这样一个地方。” 资金与影响: 虽然具体金额未公开,但预计是数十亿欧元级别。此投资对于财政压力较大的勃兰登堡州意义重大,尤其是在该州计划新举债约20亿欧元的背景下。 Plattner的地区影响力: 他曾出资重建州议会大楼外立面,创建了Barberini博物馆和Minsk艺术馆。他在波茨坦Griebnitzsee拥有住所,并通过其基金会深度参与当地教育与文化项目。基金会总部设在著名设计师Wolfgang Joop的旧别墅中。 (图片:HPI.de)